- 回首頁
- 機械工業雜誌
- 歷史雜誌
摘要:隨著科技蓬勃發展下,人類對物質生活的要求提昇下,一般傳統滿足功能性的塑膠製品已漸漸無法滿足消費者需求。因此如何有效提昇成形過程結構之轉寫性及降低成形能量耗用,更是當今產業界追求之重要課題,故衍生出許多提昇結構轉寫的成形技術,如快速變模溫(Rapid Heating and Cooling Molding, RHCM)、高週波感應加熱及氣體加熱等技術。
因此,本研究提出一新穎成形技術-超音波輔助射出成形技術,利用超音波模組,其接觸探頭直徑2.5 mm、長度257 mm、振幅5-15 mm及頻率25 KHz,以超音波模組輔助射出成形的概念,利用開發超音波震盪模組,結合具有微結構之塑膠模具,其模具試片規格20 × 20 × 3 mm,並具有微結構深度1 mm及V-Cut微結構角度120度之特徵,利用超音波探頭放置於澆口直接與塑料接觸,透過震盪延遲塑料固化構想進行實驗,並於實驗過程中導入田口實驗方法,以L9之直角表規劃實驗配置,探討射出速度、振動幅度、振動時間及保壓壓力等因子對微結構轉寫之重要性,由實驗結果得到保壓壓力、射出速度及振動時間為影響轉寫的重要因子,可有效提升微結構轉寫深度達0.92-0.94 mm,有效輔助微結構轉寫狀況
Abstract: With progress in technology, consumer products tend to become smaller and lighter. A serious issue is the poor replication of micro features on the product surface. In order to solve this problem, several methods have been developed, such as rapid heating and cooling molding (RHCM) technology, vapor heating technology and high-frequency induction heating technology.
In this research, an innovative methodology called ultrasonic assisted injection molding process, which successfully improves the replication of micro features on the product surface. The ultrasonic vibration module tool is cylindrical with a 2.5 mm diameter and a length of 257 mm. The amplitude used was between 5-15 μm with 25 KHz vibration frequency. The geometry of the insert tool was 20 mm squared and 3 mm in thickness displaying V-cut micro structure with 1 μm of depth and base angle of 120 degree. The basic concept of ultrasonic assisted injection molding process is to avoid molten melt solidification by applying the vibrating tool to contact with resin in the gate. Additionally, in order to determine the significance of process parameters for replication, such as injection speed, vibration amplitude, vibration time and packing pressure, L9 orthogonal array of the Taguchi method was applied. Experimental results revealed that packing pressure, injection speed and vibration time were important parameters in replication which enhanced the duplicate depth to 0.92-0.94 μm.
關鍵詞:超音波、射出成形、微結構
Keywords:Ultrasonic, Injection Molding, Microstructure
前言
隨著科技日新月異,日常生活所使用之光學塑膠產品應用與日俱增,舉凡至車輛產業、一般照明、3C產業等都需光學塑膠元件。以手機為例,過去傳統手機只需一背光模組等光學元件,但隨著科技進步,消費意識抬頭,單一功能之手機無法滿足龐大消費族群,各大手機廠商為滿足消費者,增加產品銷售競爭力等情況下,紛紛推出新產品,包括具備照相、閃光燈照明、投影等多整合性功能之高性能手機,致使過去單一手機只需1-2 pcs之光學塑膠元件,大幅提升需求至4-5 pcs光學塑膠元件,也至使光學塑膠元件需求爆炸性成長。然而,除了數量的成長外,對其功能性要求也越來越高。因此,越來越多塑膠元件具有微特徵,如何有效轉寫微特徵也會影響產品其最終功能性,故提升轉寫性也是各單位研究之重要課題。
射出成形的製程中,不外乎就是解決「熱」與「冷」的問題,成形過程中由於產品必須降到固化溫度以下方能有效頂出,不影響其產品品質,但該溫度往往低於塑料塑化溫度,導致高溫塑料接觸溫度較低之模壁,即快速固化,容易有需較大之成形壓力、保壓不足、翹曲缺陷、收縮不均勻、短射及縫合線等缺陷及問題產生。
因此,本研究提出一超音波模組輔助射出成形技術[1,2],利用開發超音波震盪模組,結合塑膠光學模具,將超音波探頭直接與塑料接觸,透過高頻震盪產生熱能於澆口處延遲塑料固化,藉此輔助塑料充填,提昇產品微結構轉寫率,獲得較佳之表面粗糙度,降低射出壓力,達到提升產品品質之效果。
更完整的內容歡迎訂購 2013年12月號 (單篇費用:參考材化所定價)