- 回首頁
- 機械工業雜誌
- 歷史雜誌
曲面光束筆微影技術應用於網格結構之無縫滾筒模仁的製作與滾印結果
作者
李永春、溫宗倫
刊登日期:2015/09/01
摘要:本研究自行發展一無光罩式(mask-less)曲面光束筆微影技術,用於製作具網格結構之無接縫滾筒模仁。首先以自行架設之噴塗系統將稀釋光阻以霧狀型態均勻噴塗於直徑5 cm、長15 cm之金屬滾筒模仁;接著利用準分子雷射加工微透鏡(micro-lens)陣列,進行黃光微影蝕刻製程於微透鏡陣列上製作一維圓形開孔,藉由這一維圓孔微透鏡陣列將UV平行光聚焦成一微小光點,並搭配精密轉軸以及高精度平台於光阻層書寫網格以及任意圖形,再以顯影液去除額外部分;之後利用等向性蝕刻特性壓縮線寬同時將光阻圖形轉移至金屬模仁上,最後利用電解拋光改善模仁微結構的粗糙度,即成功地完成具網格結構之無接縫滾筒模仁。本研究所製作之無縫滾筒模仁可配合UV光固化滾印,快速、連續且大面積的滾印出具網格結構圖形的PET模片。
Abstract: In the present study, a new technique named as mask-less curved surface beam-pen lithography has been developed for fabrication roller molds with seamless and meshes microstructures. First, a spray system is used to coating a uniform and thin photo-resist (PR) layer on the 5cm diameter cylindrical surface with 15cm of length. Secondly, a one-dimensional (1D) micro-lens array which is fabricated by excimer lacer system are aligned with a 1D circular aperture array which is made by lithography processing and focused the parallel UV light. Thirdly, the continuous and seamless meshes or optional graph are patterned on the PR layer by 1D circular aperture micro-lens array which converged the UV light into a 1D array of focal spot and with accurate mechanical alignment and precision rotation control. Finally, the meshes microstructures pattern are transferred to the metal roller surface by etching processing. Simultaneously, the width of the line in meshes microstructures also are reduced by the etching processing. To further improve the surface roughness, electro-polishing technique is adopted. Then, this patterned metal roller mold is used to produce large-area PET film with continuous meshes microstructures by roll to roll (R2R) UV roller imprinting technique.
關鍵詞:無光罩曲面光束筆微影技術、光阻噴塗系統、無接縫滾筒模仁
Keywords:Mask-Less Curved Surface Beam-Pen Lithography, Spray Photo-Resist Coating System, Seamless Roller Mold
前言
滾印技術(roller imprinting)的歷史悠久;其最大的優點是可以大面積、連續且快速的將滾筒模仁的表面特徵圖案轉移或複製到基材的表面,相較於其他微奈米圖形轉印技術,滾印技術擁有低成本與高效率的優勢。若使用一軟性且可收捲的高分子薄片型材料,便可形成捲對捲(roll-to-roll, R2R)的連續滾印製程。其主要應用領域涵蓋光電產業中的觸控面板(touch panel)、光學膜(optical film)、印刷電路板(printed circuit board, PCB)、軟性太陽能板(polymer solar cell)等產品。而隨著2007年蘋果智慧型手機的問世,觸控面板在消費性電子的商機也隨之啟動;觸控面板具有更簡易和直覺化的人機介面,使得系統操作功能擁有更廣泛的使用性;應用面除了智慧型手機(smart phone)、平板電腦、筆記型電腦、衛星定位系統(GPS)等可攜式電子產品。目前觸控產業製作導線電極的方式主要有兩種:(1) ITO玻璃基板進行黃光微影製程、(2) 網版印刷製程;但前者需仰賴複雜且多道的黃光微影製程,成本無法有效降低[1],如圖1所示;後者無法製作小線寬尺寸圖案(小於5微米),而最大的缺點乃兩者皆無法連續性生產,產能無法有效的提高。
更完整的內容歡迎訂購
2015年09月號
(單篇費用:參考材化所定價)
主推方案
無限下載/年 5000元
NT$5,000元
訂閱送出