- 回首頁
- 機械工業雜誌
- 歷史雜誌
摘要:投影機之市場隨4K超高解析度顯示器之推廣成功,逐漸覓得新的成長方向。其中方陣型透鏡陣列之開發,是雷射照明光源中關鍵元件之一。本研究為陣列微透鏡模具開發之研究,其尺寸為1111 mm、中心為採用雙面陣列微透鏡之結構6x6 mm,厚度為0.44 mm;對於光學品質而言,不只需要顧慮其殘留應力,也需要同時兼顧其成形後的翹曲量,才能確保其發光型是均勻完整的,因此模具的製作加工對位精度非常要求。
本文亦運用Moldex3D模流分析軟體針對其成形參數變更,找出優化後光學品質結果,發現其射出速度的增大,會大幅改善光程差和光彈條紋;而保壓壓力及保壓時間增加,則會改善翹曲量。綜上,改善後參數為增加射出速度、保壓壓力和時間,其光程差及翹曲量的改善幅度大約為50%,在陣列結構的位置其光彈條紋分佈也可幾乎消失。
Abstract: Along with the successful promotion of 4K Ultra High Definition Display projectors, new directions for growth have been established. Double-sided micro-lens array is one of key components in laser light source. This study performed an optical quality analysis of a square double-sided micro-lens array. The size is 11×11 mm, the center of the micro-lens array structure is 6´6 mm and thickness is 0.44 mm. Optical quality depends not only on residual stress, but also on the warpage of the final product. Since both properties determine whether the light pattern is formal and complete, the accuracy of alignment between core and cavity is very important.
The study is that the molding parameters were adjusted by using mold-flow analysis to find the optimal optical quality of optimization. The analytical results indicated that the optical path difference can be significantly improved by increasing the injection speed; moreover, the photoelastic fringes could be lessened greatly in the same time. On the other hand, warpage could be decreased by increasing packing pressure and longer packing time. In summary, injection speed, packing pressure and packing time are the most important parameters in this study. The ratio of optical path difference and warpage was improved by 50%. The distribution of photoelastic fringe in array structure area was almost completely eliminated.
關鍵詞:超精密加工、陣列微透鏡、量測
Keywords:Ultra-Precision Machining, Micro-Lens Array, Measurement
前言
早期講到光學元件消費者第一個聯想到的產品通常是相機,由於在底片相機的時代沒有那麼多電子感測器,而光學鏡頭的好壞往往決定相機的品質。現今市場上可見的光學元件型式更多樣化了,除數位相機之外,包括顯示螢幕、LED燈、光學感測器、視力矯正鏡片等早已跟消費者的生活密不可分,正因為如此光學元件的功能被付予更高的期待,如修正色差及像差、光學防振、修正梯形變形等,這些特定功能的開發需求,促使光學市場積極發展非對稱型式的光學元件,如自由曲面、陣列透鏡、離軸鏡片等製造技術。
以陣列透鏡的應用為例,過去多半使用在雷射反射鏡組上,而今其實從投影螢幕及準直鏡組(如圖1所示)上都隱藏有相關的設計應用。除此之外,更可延伸應用到光蝕刻技術、照明光形設計、陣列鏡片等產品。
從生產技術的角度來看,型陣列透鏡的曲面結構複雜,需導入複雜的製程技術(如慢刀伺服或快刀伺服加工技術),且具有能夠量測上的困難點,而方型陣列透鏡又是自由曲面的一種,因此更可以稱得上自由曲面加工的進階技術,本文藉由型陣列透鏡製造技術的開發,探討各個加工環節對曲面品質的影響,大幅降低加工誤差,對於未來面臨自由曲面不易量測的問題,亦可透過誤差的減少提供較高的精度確保,滿足新一代光機整合商品的設計需求[1]。
更完整的內容歡迎訂購 2015年12月號 (單篇費用:參考材化所定價)